Subject Name : Advanced Real Analysis

Exam Seat No:_____

C.U.SHAH UNIVERSITY Winter Examination-2015

	Subject	Code : 5SC03ARC1	Branch : M.Sc. (Mathematics)	
	Semeste	er :3 Date :01/12/2015 Time :2.30 To 5.30	Marks: 70	
	(2) (3)	tions: Use of Programmable calculator and any other elec Instructions written on main answer book are strictl Draw neat diagrams and figures (if necessary) at rig Assume suitable data if needed.	y to be obeyed.	
		SECTION – I		
Q-1		Attempt the Following questions .	(07)	
	a.	What is difference between finite and σ -finite mea	sure space? (02)	
	b. c. d.	What is measurable function? What is L^{P} Space? Define sign measure.	(02) (02) (01)	
Q-2		Attempt all questions State and Prove monoton convergent theorem . State and prove beppo-levis's theorem . State Fatou's lemma.	(14) (07) (05) (02)	
Q-2		OR Attempt all questions State and Prove Lebsegue dominated convergent to Suppose f and g are integrable on E ϵ A then sho		
		(1) $\int_{E} (f+g)d\mu = \int_{E} fd\mu + \int_{E} gd\mu$ (2) State bounded convergent theorem (BCT).	$\int_{E} \alpha f d\mu = \alpha \int_{E} f d\mu $ (02)	
Q-3		Attempt all questions State and Prove Hahn-Decomposition theorem. State and prove <i>H</i> olders inequality .	(14) (07) (07)	

OR

Page 1 || 2

Q-3		Jordan –Decomposition theorem. State and prove Minkowski's inequality.	(07) (07)
		SECTION – II	
Q-4		Attempt the Following questions.	(07)
	a.	State Caratheodary's Extension theorem.	(02)
	b.	What is Radon-Nikodym derivative?	(02)
	c.	Define Regular outer measure.	(02)
	d.	What is positive set ?	(01)
Q-5		Attempt all questions	(14)
		State and Prove Riesz - Reprentation theorem.	(07)
		Let μ be a σ -finite measure on an algebra A .suppose μ^* is the induced outer	(07)
		measure. then E is measurable \Leftrightarrow E can be expressed as proper difference A-B	
		where $A \in A_{\sigma\delta}$ and B is a set with $\mu^*(B) = 0$.	
		OR	
Q-5		Stat.e and prove Riesz-fischer's theorem	(07)
		Show $(L^{\infty}(\mu), \ .\ _{\infty})$ are normed space.	(07)
Q-6		Attempt all questions	(14)
-		Let f be monotonically increasing and right continuous .Suppose	(07)
		$(\mathbf{a}, \mathbf{b}] \subseteq \bigcup_{i \ge 1} (a_i, b_i]$ then F(b) - F(a) $\le \sum_i F(b_i) - F(a_i)$.	
		Suppose (X, A , μ) is a finite-measure space then $L^{\infty}(\mu) \leq L^{p}(\mu)$.	(07)
		OR	
Q-6		Attempt all Questions	(14)
ر -		Show that $L^{P}(\mu)$ are normed linear space.	(07)
		State and prove lusin's theorem.	(07)
			()

